Eigenvalues in Spectral Gaps of Differential Operators
نویسندگان
چکیده
Spectral problems with band-gap spectral structure arise in numerous applications, including the study of crystalline structure and the determination of transmitted frequencies in photonic waveguides. Numerical discretization of these problems can result in spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint operators which avoids spectral pollution. The method perturbs the problem into a dissipative problem in which the eigenvalues to be calculated are lifted out of the convex hull of the essential spectrum, away from the spectral pollution. The method is analysed here in the context of one-dimensional Schrödinger equations on the half line, but is applicable in a much wider variety of contexts, including PDEs, block operator matrices, multiplication operators, and others.
منابع مشابه
Asymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010